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Abskact Based on a commonly used model for the dynamical evolution of extensive vari- 
ables, a novel formulation of non-equilibrium thermodynamics is proposed which empha- 
sizes the fundamental role played by the Boltnnann constant k in fluctuations. The 
equivalence of this and the stochastic formulation is demonstrated. The k-0 of this theory 
yields the classical description of non-equilibrium thermodynamics. The new formulation 
possesses unique features which bear two important results, namely the thermodynamic 
uncertainty principle and the quantization of the entropy production rate for stationary 
States 

1. Introduction 

The role of the Boltzmann constant becomes vital when fluctuations are involved. For 
instance if k were zero, no Brownian motion would ever be observed in nature as there 
would be no fluctuations. For larger particles Brownian motion does not take place 
and the motion is deterministic. The ‘classical’ deterministic formulation is the k-0 
limit of a stochastic formulation. Another example is provided by equilibrium phase 
transitions. It is well known that the classical Landau theory of phase transitions is the 
k-0 limit of the proper theory which takes due care of growing fluctuations at the 
critical point. The Landau theory fails to predict the correct critical indices because it 
neglects fluctuations. A third example is furnished by the following consideration of 
equilibrium fluctuations. 

Consider a thermodynamic system in thermal equilibrium. Let the equilibrium state 
be represented by the point qq = 0 in the thermodynamic configuration space, where q 
denotes the set (q , ,  . . . , q,) of relevant (macroscopic) extensive variables. The entropy 
S(q) is maximal at equilibrium so that x i =  0 where xi= &Sate the conjugate intensive 
variables. Taking fluctuations around equilibrium into account, the probability distribu- 
tion of q is proportional to the Boltnnann factor: 

Thus we have an equilibrium uncertainty in qi due to fluctuations given by 
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as ( x ) ~ ~ = O .  Using the inequality 

one can easily show that 

(Aqr)Cq(Ax/)alB k b .  ( 1 .2) 

As is well known the equality sign holds for Gaussian distributions which is normally 
the case for equilibrium situations. Here again the deterministic description of equilib- 
rium state by the point qq=xes=O in the thermodynamic phase space is the k-0 
limit of the above formulation which takes fluctuations into account. Thus because of 
fluctuations, simultaneous precise knowledge of the conjugate variables 9, and xi is 
impossible. In the k-tO limit which yields the classical deterministic picture, fluctuations 
vanish so that the pair (q,, x i )  may be determined simultaneously. We shall refer to (1.2) 
and its analogue in non-equilibrium situations, to be seen later, as the thermodynamic 
uncertainty principle (TUP). 

Simultaneous fluctuations in the extensive and the conjugated intensive variables 
has always been a subject of controversy [l,  21. Consider for example the simultaneous 
fluctuations of internal energy U and the temperature T of a system in equilibrium. 
According to the statistical mechanical or microscopic point of view, in the canonical 
ensemble theory, Tenters as a Lagrange multiplier and is therefore constant and non- 
fluctuating. Alternatively one can use the microcanonical ensemble in which the energy 
is known exactly while Tcan fluctuate. Hence simultaneous fluctuations in the conjugate 
variables run into trouble from a microscopic point of view. Statistical mechanical 
ensembles correspond to the appropriate in6nite reservoirs of thermodynamics, which 
from the thermodynamic or macroscopic point of view, are used to fix the value of 
either the extensive or the conjugated intensive parameter. These infinite reservoirs (like 
their statistical mechanical counterparts, i.e. ensembles) are fictitious [l]. So from a 
macroscopic point of view (instantaneous) conjugate quantities must in principle simul- 
taneously fluctuate. In this sense there is a complimentary relation between the micro- 
scopic and the macroscopic viewpoints as noted long ago by Bohr 1941. Thus for the 
conjugate pair (U, 1/T) we have, by the equilibrium TUP, that 

which yields (Awq(AQeq =kT2. This relation has been confirmed experimentally 121, 
thus supporting the macroscopic viewpoint. In this article we adopt the macroscopic 
viewpoint which, based on the TUP, asserts that simultaneous precise knowledge of 
conjugate variables is impossible and proceed to explore the implications of such a 
viewpoint. 
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TUP is obviously important in situations where fluctuations play a significant role, 
e.g. in mesoscopic systems. Our basic aim is to extrapolate and generalize such consid- 
erations to non-equilibrium situations by emphasizing the role of k (and hence simulta- 
neous fluctuations) in systems away from thermal equilibrium. To proceed it is necessary 
to employ a model for the (deterministic) evolution of our system. This is introduced 
in the next section. Stochastic methods then provide a natural framework for incorporat- 
ing and studying non-equilibrium fluctuations. Taking advantage of the similarity 
between stochastic formulation and imaginary time quantum mechanics, we shall 
present an operator description of non-equilibrium thermodynamics based upon a rep- 
resentation ,of fluctuating thermodynamic variables by Hermitian operators, which 
emphasizes the fundamental role of k. The new formulation, based on the TUP, possesses 
unique features which bear an important implication, namely that of quantization of 
entropy production rate for stationary states which pertains to ow model. 

2. Brief review of stochastic theory 

In this section we illustrate the role of k in non-equilibrium fluctuations. In the classical 
deterministic limit, if our thermodynamic system is temporarily forced out of equilib- 
rium, its evolution will be determined by the phenomenological equations of motion 
(summation convention implied hereafter) 

where 1, is the matrix of Onsager kinetic coefficients which is positive semidefinite and 
symmetric [5 ] .  Equation (2.1) is a commonly used model for the evolution of extensive 
variables and is appropriate for a wide range of phenomena. Here x,=alS are termed 
as forces and qi as flows. These forces have a restoring character and are responsible for 
the return of the isolated system to the equilibrium configuration. In near-equilibrium 
situations (or linear domain) I, are constant and xs are linear in qs. In far from 
equilibrium situations (or the nonlinear domain) lg are not necessarily constant and xs 
are nonlinear in qs. 

Equation (2.1) is classical or deterministic which is good enough for large systems. 
However, when taking fluctuations into account we have to assign a time dependent 
probability distribution R(q, t )  to q such that 

lim R(q, t )  =~.,(q)cce~""~. (2.2) 
I-m 

This is to be regarded as an empirical condition imposed upon the physically acceptable 
non-equilibrium distributions for an isolated system. Of course R(q, t )  must remain at 
all times non-negative and normaliied. The latter condition requires that R(q, 1 )  van- 
ishes at infinity at all times. 

Below we briefly review three alternative and well known methods, namely the 
Langevin, Fokker-Planck (FP) and the path integral methods of the stochastic theory 
of non-equilibrium thermodynamics, first with reference to near-equilibrium situations. 

(i) Langevin approach: Adding a rapidly fluctuating 'force' q( t ) ,  the so-called 
white noise designed to fuffil (2.2), to the deterministic equation (2.1) yields the Lange- 
vin equation 
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It is seen that the average path satislies (2.1) and thus coincides with the classical path. 
This is characteristic of linear regions. 

(ii) Fokker-Plank approach: The Langevin equation (2.3) is equivalent to the FP 
equation [6] 

a,n(q, r)=-iga,(xin) +ki@a,a,n (2.4) 
which describes the evolution of the probability distribution. The stationary state solu- 
tion of (2.4) is readily seen to be the equilibrium distribution fulfilling requirement 
(2.2). 

(ii) Path integral approach: An alternative description is via the conditional prob- 
ability or the 'propagator' W(2/1), which is the Green function of the FP equation 

where Rli are inverse matrix elements of ig and L=det(Z-,). Thus 

9 q e x p i - i  [r df &tjj-Lx,J(&-~x,,,) (2.6) 

where 

Equation (2.6) was fist  obtained by Onsager and Machlup [7]. The quantity appearing 
in the time integral is sometimes called the Onsager-Machlup Lagrangian and is non- 
negative. It is clear from (26) that as k+O, the largest contribution comes from equation 
(21) which " i z e s  the thermodynamic action (which then attains the value zero). 
Note that only variations at the initial (and not the final) point are required to vanish. 
Writing (2.6) as 

we note that the integrand of the time integral reduces to half the entropy production 
rate at the classical deterministic level. 

Grabert and Green [SI generalized the results (2.4) and (2.6) to cover nonlinear 
situations. We want to present our formulation with reference to such results in non- 
equilibrium. However, to avoid mathematical complexity, we consider in the sequel the 
simpler case of one extensive variable q where the Onsager coef3icient I is constant but 
the intensive variable ,y may be nonlinear in q. (A general treatment for the multidimen- 
sional w e  with non-constant Onsager coefficients will be presented elsewhere.) Then 
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the path integral formula of reference [SI reduces to the standard result 

where 

and the corresponding FP equation reduces to 

a,n=-raqka) + kla:a. 

From (2.7) one again observes that the deterministic equation yields the most probable 
path as k+O. The corresponding Langevin equation is 

4= IX + rl(0 ( r l ( t ) > = O  (rl(Orl(r)> =%W- 0. (2.9) 

It is clear from (2.9) that in nonlinear domains (4) does not obey the classical determin- 
istic equation, so that the average path does not coincide with the most probable path. 
This is due to the fact that the short-time propagator in the nonlinear case is not 
Gaussian because of the term klaqX/2. However, as k+O, the average path coincides 
with the classical one. Writing (2.7) in the form 

(2.10) 

we see that the integrand of the time integral reduces to half the (deterministic) rate of 
entropy production at the classical level k+O, just as in the linear case. Equations (2.3), 
(2.4) and (2.6) are special cases of the above for x linear in q. 

These considerations illustrate the significance of the role of k in nonequilibrium 
fluctuations. 

3. Canonical operator formulation of noo-equilibrium thermodynamics 

We write the FP equation (2.3) in the form 

-ka,O(q, t)=&(q, t )  

where 

(3.la) 

fi= -Nc?a:+ika,x + ikxa,. (3.16) 

Equation (3 .1~)  has the form of the Schrodinger equation in imaginary time where f i  
is usually called the FP Hamiltonian. In our canonical operator formulation (COF) we 
lay emphasis on (simultaneous) fluctuations and the role ofk by representing fluctuating 
thermodynamic variables by Hermitian operators. In particular, we introduce an opera- 
tor p conjugate to 8 such that 

[8,81=* (3.2) 
in analogy with quantum mechanics. This is because, as noted earlier, fluctuations 
always imply uncertainties in the simultaneous measurement of conjugate variables. 
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Equation (3.2) i s  thus a manifestation of the TUP in the operator formalism. We shall 
see later that 6 reduces to x / 2  in the classical limit k-0. 

Following the analogy with quantum mechanics, in the q-representation one must 
h a v e j E  -&aq in order to satisfy TUP (3.2) and 

$1 4 )  = 91 4 )  

(qIBlQ(O>=-irtap(q, 0. (3.3) 

-ka,ln(f)) =I?I Q ( t ) )  (3.4) 

l ~ ( t ) >  = e-“/klQ(o)> (3.5) 

W L  0 = ( q l W >  

The FP equation ( 3 . 1 ~ )  then becomes 

where the FP Hamiltonian I? is a function of $ and 8. This integrates formally to yield 

where fi=exp(-tfi//k)js the evolution operator. We want to 6nd the possible forms 
of the FP Hamiltonian H compatible with the TUP (3.2) and the requirement (2.2). TUP 
implies (3.3) which can be integrated with respect to q to yield 

( .I alQ(o> =o 
where 1 .  ) = J dq 14). Thus $1 ’  ) = 0. The normalization condition for the probability 
distribution can be written as 

( , I  w> = 1 Qt. 

Differentiating this with respect to i, one obtains via (3.4), that 

( .IfilQ(t)) = 0. 

Thus if kcontainsh on its left the above is satGfied. Now assume that E. (n= 0,1,2, . . .) 
constitute the spectrum of (non-Hermitian) H with 16.) and (en] as the corresponding 
(normalised) right and left eigenvectors, respectively. Then equation (3.5) yields 

i ) = c e - E m ’ / k c n ( q ) ( & l ~ ( o ) ) .  
n 

To f a 1  requirement (2.2) one must demand that Eo=O and Re(&) > O  for n#O. Then 

nes(q) =co(q)(501n(o)>ae~q)’k. 

es(4)/k, Cq1 eS(B)/kl, > 

Ico>cce”/*l.>. (3.6) 

Hence using 

we arrive at 

g=S(@) is the entropy op_erator which has the value S(q) in the q-representation. 
Since S is a real function, S is Hermitian. Operating with p* on equation (3.6) yields 

PICO>W, e’”/kl~. ) = -ixl CO> 

(8+ ix($))I TO> = 0. 

i.e. 
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Thus if I? contains $+ ix($) on its right then k1 CO) = 0 is satisfied. Collecting results, 
the simplest form for the FP Hamiltonian compatible with TUP and the physical condi- 
tion (2.2) is therefore 

k= II;(B + if). (3.7) 
Observing that$= -ikc?,, this formcoincideswith (3.lb). Therefore t h e c o ~  is a consist- 
ent alternative formulation. We have seen that the 'Schrodinger' picture of COF corre- 
sponds to the FP approach of stochastic formulation. Taking the analogy imaginary 
time quantum mechanics further, one can define the 'Heisenberg' operators like 

f ( &  t)=e'"/kf(B) e-le/h. 

Then 

(3.8) 

and 

=(.If($, OlR(O))=Cf(q, o > o .  

Equation (3.8) has the form of the Heisenberg equation of motion. In this manner one 
can obtain the Langevin equation [9]. The 'Heisenberg' picture of COF thus corresponds 
to the Langevin description of_stochastic theory. 

Note that the FP operator His not Hermitian and therefore does not represent any 
thermodynamic observable. However, it can be reduced to a Hermitian form which is 
also positive semi-dehite by the similarity transformation 

^ ^  ,-*P f i e i / 2 = l ~ + ~ =  K +  (3.9) 
where 

6 =$ + $ix(g). (3.10) 

The eigenvalues of 

(3.11) 

y e  thus real and_non-negative and its eigenfunctions form a complete orthogonal set. 
Hand therefore €f have-the dimensions of entropy production rate. We shall see that 
the Hermitian operator HI is essentially the entropy production operator. The fact that 
its eigenvalues are non-negative is a statement of the second law of thermodynamics. 

To take the analogy with quantum mechanics still further we now turn to the path 
integral representation of our operator formalism. 

4. Path integral representation of COF 

In this section we show that the path integral representation of our COF corresponds 
to the path integral approach of stochastic formulation discussed in section 2. 
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We have by formally integrating the FP equation (3.4), that 

' ( f - o / h  In(?'))= W(q, flq', f')L!(q', t') dq' (4.1) 

Iq)=<q, flq', t') (4.2) 

s W, t )  = (41 e- 

where 
& t - f ) / k  W q ,  f I  q', t') = <ql e- 

is the conditional probability or the propagator which connects the timedependent 
probability distributions at two different times. Dividing the time interval t - t' into N 
equal piecesin the standard manner so that f -  i'= NE wc get 

( q N - 1 ,  tN-1 I q N - 2 ,  t N - 2 ) .  . . (41 7 tllq', t'> 

where f,= f +n&. This corresponds to the Chapman-Kolmogorov equation for 
Markovian stochastic processes. Note, a typical element in the integrand reads 

<qn, t. I 4.- I , tn- I >  = <a. I e-e'/hl 4.- 1). (4.3) 
Using 

/dpn I P") (PJ = 1 

we obtain, just as in quantum mechanics, three different prescriptions for evaluating 
the short-time propagator (4.3) according to whether H(6,d)  has normal, qp or Weyl 
ordering, respectively: 

Thus 
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The last expression is of course symbolic. Note that the boundary conditions in (4.5) 
involve only q and not p .  This has the form of the Feynman propagator in imaginary 
time quantum mechanics. When H contains mixed terms in $ and d,  the path integral 
must be calculated via prescriptions (4.4). However, for FP Hamiltonians which have 
the standard form 

E ? ' = @ 2 +  V(@) (4.6) 
equation (4.5) reduces via any of the prescriptions to 

4(')=4 

<qIe-""-""1q')=[ q w = <  Bqexpi-; 'sffdf H'(q,q)} (4.7) 

where 

just as in quantum mechanics. Here H'(q, @)=#/4i+ V(q) is the standard form 
Hamiltonian in terms of q = apH' = 2lp instead of p.  

Now, our FP Hamiltonian f?=@*+i@,y(@) does not have the standard form. But 
we saw in the previous section that it can be reduced by a similarity transformation to 
the standard form (4.6) with V(@~=l,y2(@)/4+lkaq~/2 (equation (3.11)). This is more 
desirable as no ordering ambiguity arises. Thus using (3.9) and (4.7) we 6nd 

Id> ( q l  e-&f-Wk 

I 4') -e(S(a)-S(<))/Ur - ( q l  e-*(l-f)/h 

This coincides with the result (2.10). Hence the path integral representation of COF 
corresponds to the path integral approach of stochastic formulation. As mentioned 
before, at the classical deterministic level k+O, q=xI and sop  =x/2. This is the classical 
path along which H' equals half the (deterministic) entropy production rate. However, 
entropy production also suffers from fluctuations and is therefore nondeterministic. 
Following our theme of representing fluctuating thermodynamic variables by Hermitian 
operators, we conjecture that the entropy p_roduction is represented by the Hermitian 
(and positive semidefinite) operator fI=2H'. This is justified because fI has all the 
necessary ingredients namely that (i) it is Hermitian and has the dimensions of entropy 
production rate, (ii) it is positive semidefinite as required by the second law of thermo- 
dynamics, (ii) it reduces to the deterministic entropy production rate as k-0. We see 
in the next section that the spectrum of fI is discrete. 

5. Quantization of entropy production rate 

Returning to the 'Schrodinger' picture of the COF, it is easily shown that the similarity 
transformation (3.9) transforms the FP equation (3.4) into 

-ka,V(q, t ) = + f i V ( q ,  t)=(-k2a:+ v(m(q, t )  (5.1) 
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which looks more like the Schrodinger equation in imaginary time, where 

v(q, t)cce-s(q)'2a n(q, t )  (5.2) 
and of course V(q)=I,y2/4+kIa,X/2. We shall demonstrate how the new FP equation 
(5.l), which is related to the old one by a similitude, can offer an alternative but more 
physical description of the system's evolution in terms of the eigenstates and eigenvalues 
of fr which represent, respectively, the allowed stationary states and their corresponding 
values of the entropy production rate for the system. 

The magnitude of the restoring force ~ ( q )  generally grows monotonically as q-a, 
(omitting pathological cases). Thus V(q) also goes to infinity in this limit and the 
spectrum of fr is discrete. This implies that the eigenfunctions of fl are square integrable 
and hence vanishing at infinity. We shall illustrate this explicitly for the linear domain 
in the next section. The solution of (5.1) can thus be written as 

(5.3) 

where vv.(q) (n=O, 1,Z. . .) are the (normalized) eigenstates of fl and CT" are the 
Corresponding eigenvalues : 

fivn(4)= WY"(4). (5.4) 
As mentioned before, y,(q) form a complete orthonormal set and ~ ~ 2 0 .  

By direct substitution, we see that vo(q)ccexp(S(q)/2k) is a solution of (5.3) with 
CT,=O. This corresponds to the equilibrium state. AI1 other eigenstates have cn>O. 
Orthononnality of w.(q) implies that in (5.3) 

n 

cn=J dq wv.(q)v(q,o). 

Thus C,, are determined by the initial conditions and carry the initial state information 
to later times. Taking CO = 1 yields 

having used (5.3) and the orthononnality of v.(q). Thus the normalization is preserved 
at all times. This is to be expected as the FP equation has the form of a continuity 
equation. In terms of n(q, t )  we have by (5.2) that 

m 
a(q, t)ax c, e(s(+unt)'2a yv.(q) 

0 

so that 

lim n(q, t)=n,,(q)cces'q)'x. 
2-m 

It is seen from (5.3) that as t increases, the role of C., and therefore the initial conditions, 
becomes less significant. At sufficiently large times the system essentially loses its 
memory and finally settles in the equilibrium state. We note, in passing, that the stability 
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of the final equilibrium state, which was evident from the start by imposing (2.2), is 
guaranteed by the existence of the Lyapunov function 

9 = -k(w(O I w@)> < 0 s ”=<Y( t ) l n l  Cv(f))XJ (5.6) 
The discrete eigenvalues U. are the (quantized) values of the entropy production rate 
pertaining to ‘states’ represented by w.(q). For this quantization of the entropy produc- 
tion to be of physical significance, it must pertain to physical states. But the individual 
terms in the expansion of (5.3) for y(q, f) are not physically acceptable solutions for 
nfO because they do not meet the normalization condition (5.5). So for nfO, the 
eigenfunctions vv.(q) cannot represent physical states and the only allowed stationary 
state is the final equilibrium configuration yo(q). This is obviously because in our 
analysis (by imposing condition (2.2)) we considered the relaxation of an isolated 
system. However, we can make v,Jq), for n#O, physically realizable as non-equilibrium 
stationary states by imposing suitable (fixed) boundary conditions: we can maintain a 
non-equilibrium stationary state by a continuous flow of sufficient ‘negative’ entropy 
from the environment through appropriate weak (and fixed) external constraints [lo]. 
This may be done by adjusting the value of a relevant control parameter which must 
not exceed some critical value for the constraint to remain weak. (This is necessary for 
the stability of the final stationary state reached [lo]). Then, from an initial non- 
equilibrium state the system will evolve towards the stationary state of allowed minimum 
entropy production rate (chosen from the discrete set { 6.) and represented by the 
corresponding eigenfunction) compatible with the imposed boundary conditions. This 
corresponds to the classical minimum entropy production principle of Prigogine [ 111, 
the only notable difference being that of quantization of entropy production rate which 
pertains to our model solely due to the effect of fluctuations. The eigenstates (and the 
corresponding eigenvalues) of fI can therefore be conjectured to characterize the pos- 
sible stationary states of the system (compatible with appropriate constraints imposed 
on its surface) and the discreteness of its spectrum expresses the quantization of entropy 
production rate for the stationary states. (Equation (5.3) then compares with its 
analogue in quantum mechanics namely the expansion of an arbitrary state in terms 
of stationary states.) Thus the collection of eigenstates (or eigenvalues) of fI characterize 
the so-called (stable) thermodynamic branch [lo] of the system. 

The situation here is very much like that of an atom and the Frank-Hertz experi- 
ment: stationary states of an atom can only have certain allowed energies. When the 
atom is excited by a beam of incident particles with definite energy, only allowed 
stationary states compatible with the incident energy will be occupied. By continuously 
altering the incident energy, resonance in absorption will occur when the incident energy 
matches those of the stationary states. Experimentally, quantization of entropy produc- 
tion rate may similarly be verified by a slow and continuous variation of the control 
parameter which changes the amount of negative entropy fed into the (mesoscopic) 
system (which is initially in equilibrium), and looking for resonances in the absorption 
of the negative entropy through some response to the perturbation. Then, below some 
critical value of the control parameter, i.e. before bifurcation occurs; these resonances 
must be observed at certain (discrete) values of the control parameter. 

6. Example: quantization of entropy production rate in the linear domain 

For a system in near equilibrium the restoring force is 
x = -Yq/[  
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where we have written the constant of proportionality as y / b O  for later convenience. 
Thus S= - y$/21, which has its maximum value at equilibrium q=O, and the classical 
deterministic equation becomes 4=!x = -yq. Then 

which goes to infinity as q+w. The eigenvalue equation (5.4) thus becomes 

(6.2) 
1 1 
41 2 

which resembles the time-independent Schrijdinger equation in a simple harmonic 
potential. In terms of x=(y/2ko"'q, the above reduces to 

-Ply." + - y2$vn-- ( k y  + 0") vn= 0 

The solutions of this are well known. Unless a,,=2nky (n=O, 1,2, . . .), the solutions 
blow up at infinity. For o.=2nky they are the well known Hermite functions 

v.(x) =AH.(x) e-*P 

where H.(x) are the Hermite polynomials of degree n. Thus the normalized solutions 
are 

so that ~o(q)ocexp(S(q)/uC) with m = O ,  as expected. Thus the allowed stationary states 
of the system will have c ~ ~ = 2 n k y  which can be maintained by a corresponding flow of 
negative entropy from the environment into the system. 

The role of the TUP is inherent in our operator formalism which brings out the 
quantization of entropy production rate as a consequence. These are solely due to the 
effect of fluctuations. 

The formulation presented in this article is proposed as a proper framework for 
incorporating (simultaneous) fluctuations by emphasizing the vital role played by the 
universal constant k in fluctuations. The operator approach may be extended to other 
models of relaxation phenomena, e.g. for continuous systems, the formulation of which 
becomes analogous to that of a quantum field theory in imaginary time. Such a theory 
becomes technically useful and provides a deeper insight whenever fluctuations play a 
signiticant role. 
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